版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主.(一)函数单调性的判断函数单调性判断常用方法:例1 证明函数在区间上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行. 解:设且, , 故函数在区间上为减函数.练习1 证明函数在区间上为减函数(定义法)练习2 证明函数在区间上为增函数(定义法、快速判断法)练习3 求函数定义域,并求函数的单调增区间(定义法)练习4 求函数定义域,并
2、求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习)(二) 函数单调性的应用例1 若函数是定义在上的增函数,且恒成立,求实数的范围。练习1 若函数是定义在上的增函数,且恒成立,求实数的范围练习2 若函数是定义在上的增函数,且恒成立,求实数的范围例2 若函数是定义在上的减函数,且恒成立,求实数的取值范围.练习1 若函数是定义在上的减函数,且恒成立,求实数的取值范围.例3 求函数在区间上的最大值.练习1 求函数在区间上的最大值二 、奇偶性题型例1 判断下列函数的奇偶性1) 2)3) 4)解:1)的定义域为R,所以原函数为偶函数。2) 的定义域为即,关于原点
3、对称,又即 ,所以原函数既是奇函数又是偶函数。3)的定义域为 即,定义域不关于原点对称,所以原函数既不是奇函数又不是偶函数。4)分段函数的定义域为关于原点对称,当时,当时, ,综上所述,在上总有 所以原函数为奇函数。注意:在判断分段函数的奇偶性时,要对x在各个区间上分别讨论,应注意由x的取值范围确定应用相应的函数表达式。练习 判断下列函数的奇偶性 1) 2) 3) 4) 5)例2 设是R上是奇函数,且当时,求在R上的解析式解:当时有,设, 则,从而有 ,是R上是奇函数,所以 ,因此所求函数的解析式为注意:在求函数的解析式时,当球自变量在不同的区间上是不同表达式时,要用分段函数是形式表示出来。练
4、习1已知为奇函数,当时,求的表达式。例3 已知函数且,求的值解:令,则 为奇函数, 练习1 已知函数且,求的值例4 设函数是定义域R上的偶函数,且图像关于对称,已知时,求时的表达式。解:图像关于对称, = 所以时的表达式为=练习1 设函数是定义域R上的偶函数,且恒成立,已知时,求时的表达式例5 定义在R上的偶函数在区间上单调递增,且有求的取值范围。解:,且为偶函数,且在上单调递增,在上为减函数,所以的取值范围是练习1 定义在上的奇函数为减函数,且,求实数a的取值范围练习2 定义在上的偶函数,当时,为减函数,若成立,求m的取值范围.综合练习1.判断函数的奇偶性 2.求下列函数的单调区间(1) ;
5、 (2) ; (3)3函数在上是单调递减函数,则的单调递增区间是 4.若函数在区间上是奇函数,则a=( )A.-3或1 B。 3或-1 C 1 D -3 已知函数,则它是( )A 奇函数 B 偶函数 C 即是奇函数又是偶函数 D既不是奇函数又不是偶函数5判断下列函数的奇偶性(1) (2)6.已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则( ). A. B. C. D. 7.已知定义在R上的奇函数满足,则的值为()A. -1 B. 0 C. 1 D. 28.已知函数f(x)=,x1,(1)当a=时利用函数单调性的定义判断其单调性,并求其值域(2)若对任意x1,f(x)0恒成立,求实数
6、a的取值范围富不贵只能是土豪,你可以一夜暴富,但是贵气却需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。” 如今我们不缺土豪,但是我们缺少贵族。高贵是大庇天下寒士俱欢颜的豪气与悲悯之怀,高贵是位卑未敢忘忧国的壮志与担当之志 高贵是先天下之忧而忧的责任之心。精神的财富和高贵的内心最能养成性格的高贵,以贵为美,在不知不觉中营造出和气的氛围;以贵为高,在潜移默化中提升我们的素质。以贵为尊,在创造了大量物质财富的同时,精神也提升一个境界。一个心灵高贵的人举手投足间都会透露出优雅的品质,一个道德高贵的社会大街小巷都会留露出和谐的温馨,一个气节高贵的民族一定是让人尊崇膜拜的民族。别让富而不贵成为永久的痛。分享一段网上流传着改变内心的风水的方法,让我们的内心高贵起来:喜欢付出,福报就越来越多;喜欢感恩,顺利就越来越多;喜欢助人,贵人就越来越多;喜欢知足,快乐就越来越多;喜欢逃避,失败就越来越多;喜欢分享,朋友就越来越多。喜欢生气,疾病就越来越多;喜欢施财,富贵就越来越多;喜欢享福,痛苦就越来越多;喜欢学习,智慧就越来越多。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 案例1-西南航空公司的核心竞争力
- 2025年度木材行业绿色认证咨询服务合同8篇
- 2025年度木工行业展会策划与执行分包合同4篇
- 二零二五年度办公楼绿化带养护与清洁合同3篇
- 2025年产权激励转让合同
- 房地产市场调控与政策解读
- 2025版门窗产品进出口贸易合同范本7篇
- 2025年住宿服务预付款合同
- 房地产市场价格波动趋势
- 2025版模具采购合同与模具租赁合作协议4篇
- (完整版)高考英语词汇3500词(精校版)
- 我的家乡琼海
- (2025)专业技术人员继续教育公需课题库(附含答案)
- 《互联网现状和发展》课件
- 【MOOC】计算机组成原理-电子科技大学 中国大学慕课MOOC答案
- 2024年上海健康医学院单招职业适应性测试题库及答案解析
- 2024年湖北省武汉市中考语文适应性试卷
- 非新生儿破伤风诊疗规范(2024年版)解读
- 2024-2030年电炒锅项目融资商业计划书
- EDIFIER漫步者S880使用说明书
- 上海市华东师大二附中2025届高二数学第一学期期末统考试题含解析
评论
0/150
提交评论